En el triángulo isósceles $ABC$, con $AB = AC$, $D$ es un punto sobre la prolongación de $CA$ tal que $DB$ es perpendicular a $BC$, $E$ es un punto sobre la prolongación de $BC$ tal que $CE = 2BC$, y $F$ es un punto sobre $ED$ tal que $FC$ es paralela a $AB$. Probar que $FA$ es paralela a $BC$.