II OIM 1987
Puntos en lados opuestos de un cuadrilátero
Sean $ABCD$ un cuadrilátero plano convexo, y $P$ y $Q$ puntos de $AD$ y $BC$, respectivamente, tales que
$$\frac{AP}{PD}=\frac{AB}{DC}=\frac{BQ}{QC}$$
Demuestre que los ángulos que forma la recta $PQ$ con las rectas $AB$ y $DC$ son iguales.
Raíces de una ecuación cúbica
Si $r, s$ y $t$ son las raíces de la ecuación $$x(x-2)(3x-7)=2$$
a) Demuestre que $r,s$ y $t$ son positivos.
b) Calcule $\arctan{r}+\arctan{s}+\arctan{t}$
El truco es conjugar
Pruebe que si $m, n, r$ son enteros positivos, no nulos, y $$1+m+n\sqrt{3}=(2+\sqrt{3})^{2r-1}$$, entonces $m$ es un cuadrado perfecto.
Una condición de isósceles
En un triángulo $ABC$, $M$ y $N$ son los puntos medios respectivos de los lados $AC$ y $AB$, y $P$ el punto medio de intersección de $BM$ y $CN$. Demuestre que, si es posible inscribir una circunferencia en el cuadrilátero $ANPM$, entonces el triángulo $ABC$ es isósceles.
Funciones que cumplen ecuación
Encontrar las funciones $f(x)$ tales que cumplen la ecuación $$[f(x)]^2[f(1-x)/(1+x)]=64x$$ para $x\neq0,x\neq1,x\neq-1$
Olimpiada Iberoamericana (el 4 de 1987)
Se define la sucesión $p_n$ de la siguiente manera: $p_1=2$ y, para $n\geq2$, $p_n$ es el mayor divisor primo de $p_1p_2\ldots p_{n-1}+1$. Demostrar que $p_n$ es diferente de 5.