Febrero 2008

Entrada de blog

Problema, semana 18-22 de Feb.

Enviado por jmd el 24 de Febrero de 2008 - 15:58.
Tres perpendiculares (problema de la semana 18-22 de febrero) Sean A, B, C tres puntos en una recta l, con B entre A y C. Por A, B, C se levantan perpendiculares $l_{1}, l_{2}, l_{3}$, respectivamente, a $l$. Demostrar, utilizando geometría analítica, que si P es un punto cualquiera en $l_2$, Q es la intersección de AP con $l_3$, y R el punto de intersección de BP con $l_1$, entonces BP es bisectriz del ángulo RBQ. Solución:
Entrada de blog

Estos eran dos amigos...

Enviado por jmd el 26 de Febrero de 2008 - 02:22.

B: Ah…Mmhh… Creo que esa sí me la sé. Es base por altura. ¿Cierto?

A: ¿Pero si no te dan la altura?

B: Bueno, pues ¿qué te dan?

A: Te dan las longitudes de los lados.

B: Bueno, entonces saco la altura con el seno del ángulo ¿te dan un ángulo?

A: No.

B: Ah pues deja ver…Creo que se puede eliminar el seno utilizando la ley de cosenos… eso lo hice una vez cuando estudié la secundaria… Deja ver si me sale…

$2(ABC) = ah = absenC$ ¿OK?

A: Con $(ABC)$ estás denotando el área del triángulo $ABC$ ¿no es así?