Febrero 2008
Entrada de blog
Problema, semana 18-22 de Feb.
Enviado por jmd el 24 de Febrero de 2008 - 15:58.
Tres perpendiculares (problema de la semana 18-22 de febrero)
Sean A, B, C tres puntos en una recta l, con B entre A y C. Por A, B, C se levantan perpendiculares $l_{1}, l_{2}, l_{3}$, respectivamente, a $l$. Demostrar, utilizando geometría analítica, que si P es un punto cualquiera en $l_2$, Q es la intersección de AP con $l_3$, y R el punto de intersección de BP con $l_1$, entonces BP es bisectriz del ángulo RBQ.
Solución:
Entrada de blog
Estos eran dos amigos...
Enviado por jmd el 26 de Febrero de 2008 - 02:22.
B: Ah…Mmhh… Creo que esa sí me la sé. Es base por altura. ¿Cierto?
A: ¿Pero si no te dan la altura?
B: Bueno, pues ¿qué te dan?
A: Te dan las longitudes de los lados.
B: Bueno, entonces saco la altura con el seno del ángulo ¿te dan un ángulo?
A: No.
B: Ah pues deja ver…Creo que se puede eliminar el seno utilizando la ley de cosenos… eso lo hice una vez cuando estudié la secundaria… Deja ver si me sale…
$2(ABC) = ah = absenC$ ¿OK?
A: Con $(ABC)$ estás denotando el área del triángulo $ABC$ ¿no es así?