Agosto 2008
Invariantes: un frame que permite razonar por el absurdo
Invariantes
(Adaptado de http://boumbo.toonywood.org/xavier/old/maths/stmalo/base-cours.pdf )
Se tiene un conjunto de configuraciones (por ejemplo, estados o posiciones en un juego). A una configuración inicial se le aplica una transformación (una jugada) sujeta a ciertas reglas (las reglas del juego) y sobre la configuración resultante se aplica otra transformación de acuerdo a las mismas reglas (el juego sigue). Se pide decidir si una cierta configuración puede o no obtenerse mediante transformaciones válidas partiendo de una configuración inicial.
Arco capaz: un problema de lugar geométrico
En este post voy a definir el problema de lugar geométrico denominado arco capaz y a discutir el procedimiento de su construcción.
El problema y su procedimiento de construcción
En el problema de lugar geométrico denominado arco capaz, se da un segmento $AB$ y un ángulo $\lambda$. Se pide describir el lugar geométrico de los puntos en el plano, desde los que el segmento $AB$ se ve desde un ángulo $\lambda$.
Para quienes tienen prisa, el procedimiento de construcción es el siguiente:
Un ejercicio de prueba biyectiva en combinatoria
Como se sabe, el número de elementos del producto cartesiano de dos conjuntos finitos es el producto de las cardinalidades de los conjuntos. Pero aquí vamos a exhibir una demostración de ese hecho aplicando una prueba biyectiva de $|A \times B| = |A| |B|$.
Para demostrarlo vamos a definir una función entre el producto cartesiano $A\times B$ y el conjunto de enteros $S = \{0, 1, ..., |A||B| - 1\}$.