Cociente diferencial (de una función)

Versión para impresión

El cociente diferencial de la función f se define como

f(x+h)f(x)h

Es importante no sólo porque, al tomar el límite cuando h tiende a cero resulta la derivada de la función, sino también porque admite la siguiente interpretación --fundamental para la comprensión de la derivada y para sus aplicaciones:

El cociente diferencial es la pendiente  de la secante (recta que corta a la gráfica de f) que pasa por los puntos (x,f(x)) y (x+h,f(x+h)

Es debido a esta interpretación del cociente diferencial que se dice que:

La derivada es la pendiente de la tangente  a la curva (la gráfica de f(x)) en el punto (x,f(x)).

Asimismo, la h se interpreta como una variación de la x y debe considerarse pequeña (puesto que a final de cuentas "se va a ir a cero").