Sean dados una circunferencia de centro $O$ y radio $r$, y un punto $A$ en su interior distinto de $O$. Encontrar un punto $B$ en el plano de tal manera que $OA\cdot{OB}=r^2$. Justifica tu respuesta demostrando la validez del procedimiento que ubica el punto $B$.
Ver también:
Potencia de un punto (respecto a una circunferencia)
Ver también:
Circunferencias ortogonales