Dado el triángulo $ABC$, se consideran los puntos $D$, $E$, y $F$ sobre los segmentos $BC$, $AC$, y $AB$, respectivamente. Demostrar que si los segmentos $AD$, $BE$, y $CF$ pasan por el centro de la circunferencia circunscrita al triángulo, de radio $R$, entonces
$\displaystyle \frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$.
Ver también:
Método de áreas (para encontrar razones)
Ver también:
Circuncírculo (de un triángulo)