Publicaciones Recientes
Mesa hexagonal con mantel rectangular
Carlos tiene una mesa en forma de hexágono regular y un mantel rectangular con área 2022 que cubre un rectángulo de la mesa formado por exactamente dos lados paralelos de la mesa como bases del rectángulo. ¿Cuál es el área de la mesa?
El difícil de la segunda ronda (el 4)
Tenemos 16 mosaicos que tienen dos cuartos de circunferencia centradas en esquinas opuestas cuyo radio es la mitad del lado de la baldosa como se muestra:
Pon a prueba tu vista
En el trapecio ABCD de bases AB y CD, las diagonales AC y BD son perpendiculares entre sí. Los Segmentos AB y BD miden 20 m y 17 m respectivamente. El área del triángulo ABD es 102 m2. ¿Cuántos metros mide el lado CD?
El número de Belmaris
André, Belmaris, Claudia, Daniel, Elmer y Germán van a jugar a decir números en ese orden. André y Belmaris podrán elegir sus números, pero los siguientes deben decir el resultado de la multiplicación de los números que dijeron las dos personas antes que ellos, sin equivocarse. Si André dijo "2" y Germán dijo "6 075 000" (seis millones setenta y cinco mil), ¿qué numero dijo Belmaris?
Las prendas de Mauricio
Mauricio se está probando ropa en una tienda. Está indeciso entre 4 camisas, 7 suéteres, 3 sudaderas y 3 pantalones, todos estos artículos distintos. Comprará exactamente 3 artículos, todos de diferentes tipos (es decir, no dos camisas y un suéter o tres pantalones, etc.). ¿De cuántas formas Mauricio podrá hacer sus compras?
Problema 4. 21a OMM Final Estatal
Dos personas A y B van a jugar un juego alternando turnos; A toma el primer turno. Para el juego está dibujada sobre un papel una cuadrícula de 7 × 7. En cada turno se borran algunos de los cuadritos como sigue: El jugador en turno escoge un cuadrito y borra toda la columna y el renglón a los que pertenece ese cuadrito dentro de la porción rectangular donde está en ese momento el cuadrito. Por ejemplo, si al principio A escoge
el cuadrito marcado con 1 en la figura (a) de abajo, a B le queda la figura (b) y, si él escoge el cuadrito marcado con 2, entonces para el siguiente turno a A le queda la figura (c).
Problema 3. 21a OMM Final Estatal
En la figura, $ABC$ es un triángulo isósceles con $|AB| = |AC|$; $D$ es un punto sobre $AC$ tal que $DB$ es perpendicular a $BC$; $E$ es un punto sobre la recta $BC$ tal que $|CE| = 2|BC|$ y $F$ es un punto sobre $ED$ tal que $FC$ es paralela a $AB$. Probar que la recta $FA$ es paralela a $BC$.
Práctica de módulos
Problema 4 - IMO 2022 - Un cíclico a partir de un pentágono
Problema 5 - IMO 2022 - Redacción corta pero peligrosa
Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen
ap = b! + p