Un producto de Cauchy

Versión para impresión
Su voto: Ninguno Media: 5 (1 voto)

Sea dada una sucesión finita $a_0,a_1,a_2,\ldots,a_n$ de números reales positivos. Demostrar que la sucesión es geométrica si y sólo si se cumple la ecuación
$$(a_0^2+a_1^2+\ldots+a_{n-1}^2)(a_1^2+a_2^2+\ldots+a_n^2)=(a_0a_1+a_1a_2+\ldots+a_{n-1}a_n)^2$$

Ver también: 
Otra forma de ver Cauchy
Ver también: 
La desigualdad de Cauchy