Sean $A$ y $B$ dos conjuntos finitos de números reales positivos tales que:
- Para cualquier par de elementos $u \geq v$ de $A$, se cumple que $u+v$ es elemento de $B$
- Para cualquier par de elementos $s > t$ de $B$, se cumple que $s-t$ es un elemento de $A$
Prueba que $A=B$ o existe un número real $r$ tal que $B=\{2r, 3r, 4r, \dots \}$