Sea $MN$ una línea paralela al lado $ BC $ del triángulo $ ABC $, con $ M $ sobre el lado $AB$ y $ N $ sobre el lado $AC$. Las íineas $BN$ y $CM$ se intersectan en un punto $P$. Los circuncírculos de los triángulos $BPM$ y $CPN$ se intersectan en $P$ y $Q$. Demostrar que $\angle{BAQ}=\angle{CAP}$