Publicaciones Recientes

Problema

P6 OMM 2004. Cambios de dirección en cuadrícula 2004X2004

Enviado por jmd el 24 de Julio de 2010 - 10:03.

¿Cuál es el mayor número posible de cambios de dirección en un recorrido sobre las líneas de una cuadrícula de $2004\times 2004$ casillas, si el recorrido no pasa dos veces por el mismo lugar?

Problema

P5 OMM 2004. Dos circunferencias

Enviado por jmd el 24 de Julio de 2010 - 09:59.

Sean $\alpha$ y $\beta$ dos circunferencias tales que el centro $O$ de $\beta$ está sobre $\alpha$. Sean $C$ y $D$ los dos puntos de intersección de las circunferencias. Se toman un punto $A$ sobre $\alpha$ y un punto $B$ sobre $\beta$ tales que $AC$ es tangente a $\beta$ en $C$ y $BC$ es tangente a $\alpha$ en el mismo punto $C$. El segmento $AB$ corta de nuevo a $\beta$ en $E$ y ese mismo segmento corta de nuevo a $\alpha$ en $F$. La recta $CE$ vuelve a cortar a $\alpha$ en $G$ y la recta $CF$ corta a la recta $GD$ en $H$. Prueba que el punto de intersección de $GO$ y $EH$ es el centro de la circunferencia circunscrita al triángulo $DEF$.

Problema

P4 OMM 2004. Número de equipos en un torneo

Enviado por jmd el 24 de Julio de 2010 - 09:47.

Al final de un torneo de futbol en el que cada par de equipos jugaron entre si exactamente una vez y donde no hubo empates, se observó que para cualesquiera tres equipos $A, B, C,$ si $A$ le ganó a $B$ y $B$ le ganó a $C$ entonces $A$ le ganó a $C$. Cada equipo calculó la diferencia (positiva) entre el número de partidos que ganó y el número de partidos que perdió. La suma de todas estas diferencias resultó ser 5000. ¿Cuántos equipos participaron en el torneo? Encuentra todas las respuestas posibles.

Problema

P3 OMM 2004. Configuración con incírculo y punto medio

Enviado por jmd el 24 de Julio de 2010 - 09:39.

Sean $Z,Y$ los puntos de tangencia del incírculo del triángulo $ABC$ con los lados $AB,CA,$ respectivamente. La paralela a $YZ$ por el punto medio $M$ del lado $BC,$ corta a $CA$ en $N$. Sea $L$ el punto sobre $CA$ tal que $NL = AB$ (y $L$ del mismo lado de $N$ que $A$). La recta $ML$ corta a $AB$ en $K$. Muestra que $KA = NC$.

Problema

P2 OMM 2004. Diferencia no menor que el centésimo del producto

Enviado por jmd el 24 de Julio de 2010 - 09:27.

¿Cuál es la mayor cantidad de enteros positivos que se pueden encontrar de
manera que cualesquiera dos de ellos $a$ y $b$ (con a $a\neq b$) cumplan $|a-b|\geq \frac{ab}{100}$?

Problema

P6 OMM 2002. Doblez en un rectángulo

Enviado por jmd el 24 de Julio de 2010 - 07:12.

Sea $ABCD$ un cuadrilátero con $AD$ paralelo a $BC$, los ángulos en $A$ y $B$ rectos y tal que el ángulo $CMD$ es recto, donde $M$ es el punto medio de $AB$. Sean $K$ el pie de la perpendicular a $CD$ que pasa por $M$, $P$ el punto de intersección de $AK$ con $BD$ y $Q$ el punto de intersección de $BK$ con $AC$. Demuestra que el ángulo $AKB$ es recto y que $$\frac{KP}{PA} + \frac{KQ}{QB} = 1$$
 

Problema

P5 OMM 2002. Ternas compatibles

Enviado por jmd el 24 de Julio de 2010 - 07:04.

Tres enteros distintos forman una terna compatible si alguno de ellos, digamos $ n $, cumple que cada uno de los otros dos es, o bien divisor, o bien múltiplo de $ n $. Para cada terna compatible de números entre 1 y 2002 se calcula la suma de los tres números de la terna. ¿Cuál es la mayor suma obtenida? ¿Cuáles son las ternas en las que se obtiene la suma máxima?

Problema

P4 OMM 2002. Hileras de dominó --con suma impar

Enviado por jmd el 24 de Julio de 2010 - 07:01.

Una ficha de dominó tiene dos números (no necesariamente diferentes) entre 0 y 6. Las fichas se pueden voltear, es decir, $[4,5]$ es la misma ficha que $[5,4]$. Se quiere formar una hilera de fichas de dominó distintas, de manera que, en cada momento de la construcción de la hilera, la suma de todos los números de las fichas puestas hasta ese momento sea impar. Las fichas se pueden agregar de la manera usual a ambos extremos de la hilera, es decir, de manera que en cualesquiera dos fichas consecutivas aparezca el mismo número en los extremos que se juntan.

Problema

P3 OMM 2002. Residuos cuadráticos (módulo 4)

Enviado por jmd el 24 de Julio de 2010 - 06:57.

Sean $n$ un entero positivo. ¿Tiene $n^2$ más divisores positivos de la forma $4k+1$ o de la forma $4k-1$?

Problema

P2 OMM 2002. Circuncírculo de la mitad de un paralelogramo

Enviado por jmd el 24 de Julio de 2010 - 06:48.

Sean $ABCD$ un paralelogramo y $\kappa$ la circunferencia circunscrita al triángulo $ABD$. Sean $E$ y $F$ las intersecciones de $\kappa$ con los lados (o sus prolongaciones) $BC$ y $CD$, respectivamente ($E$ distinto de $B$ y $F$ distinto de $D$). Demuestra que el circuncentro del triángulo $CEF$ está sobre $\kappa$.

Distribuir contenido