Publicaciones Recientes
L1.P2 (Lado de un cuadrado)
En un círculo de centro $O$ y radio $5k$, se traza un cuadrado. Uno de sus lados es cuerda de la circunferencia y el lado opuesto a la cuerda pasa por el centro $O$. Calcular la longitud del lado del cuadrado en términos de $k$.
Lista1.Problema1 (Residuo de 155/n)
El residuo que deja 80 al dividir entre un número entero positivo $ n $ es 4 ¿Cuál es residuo que deja 155 al dividirlo entre $ n $?
La complejidad de un problema geométrico: a propósito del 8(G) del concurso estatal
Programa de entrenamientos decidido: uno presencial y dos selectivos
Estimados preseleccionados y asesores:
Les comunico que el programa de entrenamientos y selectivos queda de la siguiente manera (entrenamientos y selectivos en las instalaciones de la UAMCEH-UAT)
Problema 5 TZALOA
Sean H,O el ortocentro y circuncentro del triangulo ABC con AB distinto de AC. Sea T la circunferencia circunscrita al triangulo ABC. La prolongacion de la mediana AM del triangulo ABC, corta a T en el punto N y la circunferencia de diametro AM corta a T en los puntos A y P. Demuestra que las rectas AP, BC y OH son concurrentes si y solo si AH=NH
Programa de entrenamientos indeciso...
Pero por lo pronto resuelvan los problemas del documento adjunto. Son 23 problemas básicos. Esperaría que no representen ningún reto para los primeros 10 lugares de la preselección (pero de cualquier manera resuélvanlos para que puedan ayudar a los restantes vía MaTeTaM).
Problema 6(C)
¿Cuántas ordenaciones (permutaciones) de las letras $A,B,C,D,E,F,G$ no contienen los subórdenes $BGE$ ni $EAF$? Ejemplo: $ABCDEFG$ no contiene ninguno, pero $CBGEAFD$ tiene los dos.
Problema de Cíclicos (mi primera invención)
Sea $ ABC $ un triángulo con incentro $I$ y $AB$ menor que $AC$. Sean $D,E,F$ los puntos de tangencia del incírculo con los lados $BC,CA, AB$, respectivamente. Sean $ H $ la intersección de $BI$ con $EF$, y $G$ la intersección de $CI$ con $EF.$
a) Demostrar que $I$ es el incentro del triángulo $DGH.$
b) Demostrar que las rectas $BG$ y $CH$ concurren sobre la perpendicular a $ BC $ que pasa por $D.$
Problema 8(G)
En un triángulo $ ABC $, el ángulo $ A $ mide el doble que el $ C $. Se traza la mediana $BD$ al lado $CA$ ($D$ es punto medio de $ CA $). Si el ángulo $ DBC $ es igual al ángulo en $ A $, calcular las medidas de los ángulos del triángulo $ ABC $.
Blanchet Theorem
En un triangulo $ABC $ donde $AD$ es la altura ($D$ sobre $ BC$)sea $P$ cualquier punto sobre $AD$, Y sean $E,F$las intercecciones de $BP,CP$ con $AC,AB$ respectivamente. Entonces se cumple que $AD$ es la bisectriz del angulo $EDF$