Publicaciones Recientes
L1.P19 (Doblez)
Un triángulo rectángulo isósceles, con lados iguales de medida 2, ha sido recortado de una hoja de papel que es gris de un lado y cuadriculada del otro.
L1.P18 (Producto de 3 dígitos)
¿Cuántos números $abc$ de tres dígitos son tales que al multiplicar los dígitos se obtiene un producto mayor que 60 pero menor que 65?
L1.P17 (Galletas de chocolate y almendras)
Un lote de galletas contiene galletas con almendras, galletas con chocolate, galletas con los dos ingredientes y otras que no contienen ninguno de los dos. Se encontró que 3/10 tienen almendras, 1/2 tienen chocolate y 3/28 tienen ambos ingredientes. Sin embargo se encontró que 172 galletas no tienen ninguno de los dos ingredientes.
L1.P16 (Piso enmosaicado)
Un piso rectangular está cubierto de mosaicos cuadrados. Tomando como unidad de longitud el lado de un mosaico, el piso tiene dimensiones 45 de largo y 20 de ancho. Si se traza una diagonal de una esquina a la opuesta del piso ¿cuántos mosaicos cruza la diagonal?
L1.P15 (Tangente a un círculo)
Una recta en el plano cartesiano pasa por el punto (3,0) y es tangente al círculo con centro en el origen de coordenadas y radio 1. Encontrar el punto en que la recta corta el eje vertical (de ordenadas).
L1.P14 (Generalización del L1.P13)
Dos circunferencias de radios $R$ y $ r $ son tangentes exteriormente. Encontrar la longitud de su tangente común en términos de los radios.
L1.P13 (Tangente común de dos circunferencias tangentes)
Dos circunferencias de radios 9 y 4 son tangentes exteriormente. Encontrar la longitud de su tangente común.
L1.P12 (Uno del 2009)
Encontrar el residuo en la división de $a+b+c$ entre $b$, donde $a,b,c$ son primos y cumplen la ecuación $2009=a^b(c).$
L1.P11 (Radio del incírculo de un 3,4,5)
Calcular el radio del incírculo de un triángulo cuyos lados miden 3,4,5.
L1.P10 (Equilátero en un lado)
Sobre el lado $AB$ del cuadrado $ABCD$, se traza un triángulo equilátero externo $ABE$. Calcular la medida del ángulo $AED.$