Publicaciones Recientes

Curso

Entrenamiento rumbo a la OMM 2015

Enviado por jesus el 23 de Noviembre de 2014 - 20:27.

Este es un entrenamiento de prueba.

La intención es usar la plataforma para organizarnos y mantener comunicación. Se me ocurre que podemos poner tareas, compartir soluciones y sobre todo resolver dudas.

Con el tiempo esperamos entender mejor cómo usar esta plataforma. Tanto participantes como entrenadores.

 
Entrada de blog

Desigualdad de Titu --una demostración booteable

Enviado por jmd el 23 de Noviembre de 2014 - 20:19.

Voy a presentar en este post una forma de demostrar la desigualdad de Titu Andreescu que recuerda los procesos de bootstraping utilizados en computación --y otras áreas de la ciencia. El término bootstrapping está inspirado --verosímilmente-- en Las Sorprendentes Aventuras del Baron de Munchausen. (Una serie de narraciones donde el héroe realiza tareas imposibles.) Atacho una traducción al español.

Problema

Mediatrices que pasan por un punto fijo

Enviado por German Puga el 22 de Noviembre de 2014 - 20:43.

Sea $ABC$ un triángulo acutángulo y $P,Q$ puntos sobre $AB$ y $AC$ respectivamente, tal que $AP = CQ$. Demostrar que la mediatriz de $PQ$ pasa por un punto fijo al variar $P$.

Noticia

XXVIII OMM --resultados para Tamaulipas

Enviado por jmd el 13 de Noviembre de 2014 - 22:02.

Germán    27  plata (corte en 35)

Alain     21  bronce

José Luis 16  bronce

Jesús     13  mención

El corte para los oros en 35 significa --leyendo entre líneas-- que el examen estuvo relativamente fácil. Y también que aún si Germán hubiera resuelto el 2 (con lo cual habría obtenido 33 puntos) de cualquier manera el oro le quedaba a 2 puntos de distancia.

Entrada de blog

Examen de la XXVIII OMM. Segundo día.

Enviado por vmp el 11 de Noviembre de 2014 - 12:01.

A continuación el examen del segundo día de la XVIII Olimpiada Mexicana de Matemáticas que se está aplicando a los concursantes el día de hoy en Toluca.

Problema 4 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 5 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 6 de la XXVIII OMM Segundo Día. Toluca 2014

 

Problema

XXVIII OMM Problema 6

Enviado por vmp el 11 de Noviembre de 2014 - 11:07.

Para cada entero positivo $n$, sea $d(n)$ la cantidad de divisores positivos de $n$. Por ejemplo, los divisores positivos de 6 son 1, 2, 3 y 6, por lo que $d(6)=4$.
Encuentra todos los enteros positivos $n$ tales que
$$n+d(n)=d(n)^2$$.
 

Problema

XXVIII OMM Problema 5

Enviado por vmp el 11 de Noviembre de 2014 - 10:46.

Sean $a$, $b$ y $c$ números reales positivos tales que $a+b+c=3$. Muestra que $$\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}} \geq \frac{3}{2}$$.

Problema

XXVIII OMM Problema 4

Enviado por vmp el 11 de Noviembre de 2014 - 10:36.

Sea $ABCD$ un rectángulo con diagonales $AC$ y $BD$. Sean $E$ el punto de intersección de la bisectriz del ángulo $\angle CAD$ con el segmento $CD$, $F$ el punto sobre el segmento $CD$ tal que $E$ es el punto medio de $DF$ y $G$ el punto sobre la recta $BC$ tal que $BG=AC$ (con $C$ entre $B$ y $G$).

Muestra que la circunferencia que pasa por $D$, $F$ y $G$ es tangente a $BG$.

Noticia

Examen de la XXVIII OMM. Primer día.

Enviado por vmp el 10 de Noviembre de 2014 - 17:36.

Hoy se aplicó el examen del primer día de la XVIII Olimpiada Mexicana de Matemáticas.

Aquí una foto de la selección Tamaulipas 2014.

A continuación los 3 problemas, comenta o deja tu solución en la página de cada problema:

Problema

XXVIII OMM Problema 3

Enviado por vmp el 10 de Noviembre de 2014 - 17:16.

Sean $\Gamma_{1}$ una circunferencia y $P$ un punto fuera de $\Gamma_{1}$. Las tangentes desde $P$ a $\Gamma_{1}$ tocan la circunferencia en los puntos $A$ y $B$. Considera $M$ el punto medio del segmento $PA$ y $\Gamma_{2}$ la circunferencia que pasa por los puntos $P$, $A$ y $B$. La recta $BM$ interesecta de nuevo a $\Gamma_{2}$ en el punto $C$, la recta $CA$ intersecta de nuevo a $\Gamma_{1}$ en el punto $D$, el segmento $DB$ intersecta de nuevo a $\Gamma_{2}$ en el punto $E$ y la recta $PE$ intersecta a $\Gamma_{1}$ en el punto F (con E entre P y F). Muestra que las rectas $AF$, $BP$ y $CE$ concurren.

Distribuir contenido