Publicaciones Recientes

Problema

P4 OMM 2002. Hileras de dominó --con suma impar

Enviado por jmd el 24 de Julio de 2010 - 07:01.

Una ficha de dominó tiene dos números (no necesariamente diferentes) entre 0 y 6. Las fichas se pueden voltear, es decir, $[4,5]$ es la misma ficha que $[5,4]$. Se quiere formar una hilera de fichas de dominó distintas, de manera que, en cada momento de la construcción de la hilera, la suma de todos los números de las fichas puestas hasta ese momento sea impar. Las fichas se pueden agregar de la manera usual a ambos extremos de la hilera, es decir, de manera que en cualesquiera dos fichas consecutivas aparezca el mismo número en los extremos que se juntan.

Problema

P3 OMM 2002. Residuos cuadráticos (módulo 4)

Enviado por jmd el 24 de Julio de 2010 - 06:57.

Sean $n$ un entero positivo. ¿Tiene $n^2$ más divisores positivos de la forma $4k+1$ o de la forma $4k-1$?

Problema

P2 OMM 2002. Circuncírculo de la mitad de un paralelogramo

Enviado por jmd el 24 de Julio de 2010 - 06:48.

Sean $ABCD$ un paralelogramo y $\kappa$ la circunferencia circunscrita al triángulo $ABD$. Sean $E$ y $F$ las intersecciones de $\kappa$ con los lados (o sus prolongaciones) $BC$ y $CD$, respectivamente ($E$ distinto de $B$ y $F$ distinto de $D$). Demuestra que el circuncentro del triángulo $CEF$ está sobre $\kappa$.

Problema

P1 OMM 2002. Operaciones sobre cuadrícula 32X32

Enviado por jmd el 24 de Julio de 2010 - 06:42.

 En una cuadrícula de $32\times32$ se escriben los números del 1 al 1024 de izquierda a derecha: los números del 1 al 32 en el primer renglón, los del 33 al 64 en el segundo, etc. La cuadrícula se divide en cuatro cuadrículas de $16\times16$ que se cambian de lugar entre ellas como sigue:

Entrada de blog

Clasificación de ángulos

Enviado por jmd el 23 de Julio de 2010 - 09:32.

Parecería que de ángulos hay muy poco que decir. Son los objetos geométricos que se miden con un transportador ¿cierto? Cierto, pero hay toda una terminología escolar que el aprendiz debería aprender.

En lo que sigue voy a hablar primero de una clasificación de los ángulos, y en la segunda parte voy plantear la clasificación de las relaciones entre dos ángulos. En cada una de esas clasificaciones se presenta primero un mapa conceptual y después se hace el mismo planteamiento pero de manera discursiva.

Problema

Problema 6, IMO 2010

Enviado por jesus el 21 de Julio de 2010 - 09:28.

Sea $a_1, a_2, a_3, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo $s$,
$$a_n = \textrm{max}\{a_k + a_{n-k} \textrm{ tal que } 1 \leq k \leq n - 1\}$$
para todo $n > s$. Demuestre que existen enteros positivos $\ell$ y $N$, con $\ell \leq s$, tales que $a_n = a_\ell + a_{n-\ell}$ para todo $n \geq N$.

Problema

Problema 3, IMO 2010

Enviado por jesus el 19 de Julio de 2010 - 19:44.

Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.

Problema

Problema 5, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 20:58.

En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:

  • Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
  • Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)

Problema

Problema 2, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 17:59.

Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.

Problema

Problema 4, IMO 2010

Enviado por jmd el 18 de Julio de 2010 - 16:25.

Sea $P$ un punto en el interior del triángulo $ABC$ con circunferencia circunscrita $\Gamma$. Las rectas $AP,BP,CP$ cortan otra vez a $\Gamma$ en los puntos $K,L,M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Demostrar que si $SC=SP$ entonces $MK=ML$.

Distribuir contenido