Publicaciones Recientes

Noticia

XXVIII OMM --resultados para Tamaulipas

Enviado por jmd el 13 de Noviembre de 2014 - 23:02.

Germán    27  plata (corte en 35)

Alain     21  bronce

José Luis 16  bronce

Jesús     13  mención

El corte para los oros en 35 significa --leyendo entre líneas-- que el examen estuvo relativamente fácil. Y también que aún si Germán hubiera resuelto el 2 (con lo cual habría obtenido 33 puntos) de cualquier manera el oro le quedaba a 2 puntos de distancia.

Entrada de blog

Examen de la XXVIII OMM. Segundo día.

Enviado por vmp el 11 de Noviembre de 2014 - 13:01.

A continuación el examen del segundo día de la XVIII Olimpiada Mexicana de Matemáticas que se está aplicando a los concursantes el día de hoy en Toluca.

Problema 4 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 5 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 6 de la XXVIII OMM Segundo Día. Toluca 2014

 

Problema

XXVIII OMM Problema 6

Enviado por vmp el 11 de Noviembre de 2014 - 12:07.

Para cada entero positivo $n$, sea $d(n)$ la cantidad de divisores positivos de $n$. Por ejemplo, los divisores positivos de 6 son 1, 2, 3 y 6, por lo que $d(6)=4$.
Encuentra todos los enteros positivos $n$ tales que
$$n+d(n)=d(n)^2$$.
 

Problema

XXVIII OMM Problema 5

Enviado por vmp el 11 de Noviembre de 2014 - 11:46.

Sean $a$, $b$ y $c$ números reales positivos tales que $a+b+c=3$. Muestra que $$\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}} \geq \frac{3}{2}$$.

Problema

XXVIII OMM Problema 4

Enviado por vmp el 11 de Noviembre de 2014 - 11:36.

Sea $ABCD$ un rectángulo con diagonales $AC$ y $BD$. Sean $E$ el punto de intersección de la bisectriz del ángulo $\angle CAD$ con el segmento $CD$, $F$ el punto sobre el segmento $CD$ tal que $E$ es el punto medio de $DF$ y $G$ el punto sobre la recta $BC$ tal que $BG=AC$ (con $C$ entre $B$ y $G$).

Muestra que la circunferencia que pasa por $D$, $F$ y $G$ es tangente a $BG$.

Noticia

Examen de la XXVIII OMM. Primer día.

Enviado por vmp el 10 de Noviembre de 2014 - 18:36.

Hoy se aplicó el examen del primer día de la XVIII Olimpiada Mexicana de Matemáticas.

Aquí una foto de la selección Tamaulipas 2014.

A continuación los 3 problemas, comenta o deja tu solución en la página de cada problema:

Problema

XXVIII OMM Problema 3

Enviado por vmp el 10 de Noviembre de 2014 - 18:16.

Sean $\Gamma_{1}$ una circunferencia y $P$ un punto fuera de $\Gamma_{1}$. Las tangentes desde $P$ a $\Gamma_{1}$ tocan la circunferencia en los puntos $A$ y $B$. Considera $M$ el punto medio del segmento $PA$ y $\Gamma_{2}$ la circunferencia que pasa por los puntos $P$, $A$ y $B$. La recta $BM$ interesecta de nuevo a $\Gamma_{2}$ en el punto $C$, la recta $CA$ intersecta de nuevo a $\Gamma_{1}$ en el punto $D$, el segmento $DB$ intersecta de nuevo a $\Gamma_{2}$ en el punto $E$ y la recta $PE$ intersecta a $\Gamma_{1}$ en el punto F (con E entre P y F). Muestra que las rectas $AF$, $BP$ y $CE$ concurren.

Problema

Reducción de números

Enviado por vmp el 10 de Noviembre de 2014 - 18:09.

Un entero positivo $a$ se reduce a un entero positivo $b$, si al dividir $a$ entre su dígito de las unidades se obtiene $b$. Por ejemplo, 2015 se reduce a $\frac{2015}{5}=403$. Encuentra todos los enteros positivos que, mediante algunas reducciones, llegan al número 1. Por ejemplo, el número 12 es uno de tales enteros pues 12 se reduce a 6 y 6 se reduce a 1.

Problema

Coloración en números del 1 al 4027

Enviado por vmp el 10 de Noviembre de 2014 - 17:58.

Cada uno de los números del 1 al 4027 se ha coloreado de verde o de rojo. Cambiar el color de un número es pasarlo a verde si era rojo, y pasarlo a rojo si era verde.
Diremos que dos enteros positivos $m$ y $n$ son cuates si alguno de los números $\frac{m}{n}$ o $\frac{n}{m}$ es un número primo. Un paso consiste en elegir dos números que sean cuates y cambiar el color de cada uno de los números.
Muestra que después de realizar algunos pasos es posible hacer que todos los números del 1 al 2014 sean verdes.

Entrada de blog

Sobre el problema 3 del selectivo final

Enviado por jmd el 29 de Octubre de 2014 - 10:28.
Voy a presentar en este post la solución al problema 3 del selectivo final para la preselección Tamaulipas OMM 2014. Añado una solución alternativa con un algoritmo para resolver la ecuación de Pell. (De paso, con esta solución alternativa, puede verse el poder del procedimiento --sin entrar en detalles de por qué funciona.)
 

El problema y la solución de Germán

La solución de Germán procede mediante inferencias de divisibilidad. En ese sentido es una solución muy básica.
Distribuir contenido