Sean $ABC$ un triángulo con incentro $I$ y $\Gamma$ una circunferencia de centro $I$, de radio mayor al de la circunferencia inscrita y que no pasa por ninguno de los vértices. Sean $X_1$ el punto de intersección de $\Gamma$ con la recta $AB$ más cercano a $B$; $X_2$ y $X_3$ los puntos de intersección de $\Gamma$ con la recta $BC$ siendo $X_2$ más cercano a $B$; y $X_4$ el punto de intersección de $\Gamma$ con la recta $CA$ más cercano a $C$. Sea $K$ el punto de intersección de las rectas $X_1X_2$ y $X_3X_4$. Demostrar que $AK$ corta al segmento $X_2X_3$ en su punto medio.