
Sea Γ el incírculo de un triángulo escaleno ABC, que es tangente a los lados BC,CA,AB en los puntos D,E,F respectivamente. Las rectas EF y BC se cortan en G. La circunferencia de diámetro GD corta a Γ por segunda vez en R. Sean P y Q los puntos de intersección (distintos de R) de Γ con BR y CR, respectivamente. Las rectas BQ y CP se cortan en X, el circuncírculo de CDE corta a QR en M y el circuncírculo de BDF corta a PR en N. Demostrar que PM,QN y RX son concurrentes.