
Sea ABC un triángulo acutángulo con AB<AC. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco CB de Ω que contiene a A. La perpendicular por A por BC corta al segmento BS en D y a Ω de nuevo en E ≠ A. La paralela a BC por D corta a la recta BE en L. Sea ω el circuncírculo del triángulo BDL. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <BAC.