Publicaciones Recientes
P8. OMM 1988. Esfera en octaedro
Calcule el volumen del octaedro que circunscribe a una esfera de radio 1.
P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}
Si $A$ y $B$ son subconjuntos ajenos del conjunto $\{1,2,\ldots,m\}$ y la suma de los elementos de $A$ es igual a la suma de los elementos de $B$, pruebe que el número de elementos de $A$ y también de $B$ es menor que $m/\sqrt{2}$
P6. OMM 1988. Lugar geométrico del incentro
Considere dos puntos fijos $B$ y $C$ de una circunferencia $W$. Encuentre el lugar geométrico de las intersecciones de las bisectrices de los triángulos $ABC$, cuando $A$ es un punto que recorre $W$.
P5. OMM 1988. Manipulación algebraica con el MCD
Si $a$ y $b$ son dos enteros positivos primos relativos y $ n $ es un entero, pruebe que el máximo común divisor de $a^2+b^2-nab$ y $a+b$ divide a $n+2$
P4. OMM 1988. Ocho enteros entre uno y ocho
¿Cuántas maneras hay de escoger ocho enteros $a_1,a_2,a_3,\ldots,a_8$ no necesariamente distintos, tales que $1\leq{a_1}\leq\ldots\leq{a_8}\leq8$?
P3. OMM 1988. Área de triángulo de tangentes comunes
Considere dos circunferencias tangentes exteriormente y de radios distintos; sus tangentes comunes forman un triángulo. Calcule el área de dicho triángulo en términos de los radios de las circunferencias.
P2. OMM 1988. Expresiones equiresiduales (módulo 19)
Si $a$ y $b$ son enteros positivos, pruebe que 19 divide a $11a+2b$ si y sólo si 19 divide a $18a+5b$
P8. OMM 1987. El último de la primera nacional (de geometría tridimensional)
- Tres rectas en el espacio l, m, n concurren en el punto S y un plano perpendicular a m corta a l, m, n en A, B y C respectivamente. Suponga que los ángulos ASB y BSC son de 45° y que el ángulo ABC es recto. Calcule el ángulo ASC.
- Si un plano perpendicular a l corta a l, m, n en P, Q y R respectivamente y si SP = 1, calcule los lados del triángulo PQR.
P7. OMM 1987. Problema clásico de cocientes de polinomios de la OMM
Demuestre que si $n$ es un entero positivo, entonces $$\frac{n^2 + n -1}{n^2 + 2n}$$ es una fracción irreducible (simplificada).
P6. OMM 1987. Divisibilidad clásico de la OMM
Demuestre que para cualquier entero positivo $n$, el número $(n^3-n)(5^{8n+4}+3^{4n+2})$ es múltiplo de 3804.