Publicaciones Recientes

Problema

Área de pentágono

Enviado por jmd el 1 de Mayo de 2012 - 17:24.

 

Por los vértices D y A del cuadrado ABCD de lado 5 se trazan, respectivamente, los segmentos paralelos DE y AF hacia afuera del cuadrado, de tal manera DE mide 4 y es perpendicular a EF. Encuentra el área del pentágono ABCEF.
 

Problema

Ecuación de suma de fracciones

Enviado por jmd el 1 de Mayo de 2012 - 17:22.

 

Si a y b son enteros distintos entre sí y diferentes de cero que cumplen a2010b+b+2010a=2 ¿cuál es el valor de ab?
 
Problema

Razonado con suma de dígitos

Enviado por jmd el 1 de Mayo de 2012 - 17:20.

 

Mauricio ya cumplió años en el 2010. Al sumar los dígitos de la fecha de su nacimiento se dio cuenta que obtenía su edad. ¿Cuántos años puede tener Mauricio?
 

Problema

Seccionado de un cubo de lado 3

Enviado por jmd el 1 de Mayo de 2012 - 17:18.

 

Un cubo de lado 3 se divide en 27 cubitos unitarios. ¿De cuántas formas podemos elegir tres cubitos de manera que sus centros estén en una misma recta? Nota: El centro de un cubito se localiza en el punto medio de una diagonal mayor.
 

Problema

Demostrar perpendicular

Enviado por jmd el 1 de Mayo de 2012 - 07:22.

Sean ABC un triángulo rectángulo y M el punto medio de la hipotenusa BC. Sus catetos cumplen que CA es menor que AB. Se coloca un punto D sobre AB de manera que CA=AD. Finalmente, sea E el punto común de AM y CD. Si F es un punto sobre BC tal que EF es paralela a BC AC, demostrar que AM es perpendicular a FD.

Problema

Tangentes a circunferencia desde el centro de otra

Enviado por jmd el 1 de Mayo de 2012 - 07:19.

 

Considere las circunferencias a y b de centros A y B respectivamente. Desde el centro A se trazan las tangentes a b y éstas cortan a a en los puntos P y Q. Desde el centro B se trazan las tangentes a a que cortan a b en R y S. Demostrar que PQRS es un rectángulo.
 

Problema

Número igual a la suma del factorial de sus dígitos

Enviado por jmd el 1 de Mayo de 2012 - 07:18.

 

Encontrar todos los números de 3 dígitos de la forma abc (a es el dígito de las centenas, b es el dígito de las decenas y c es el dígito de las unidades) que cumplan con: abc=a!+b!+c!. (Nota: n! es el producto n(n-1)...(2)(1) y se lee n factorial.)
 

Problema

Sumas de productos de filas y columnas en un tablero

Enviado por jmd el 1 de Mayo de 2012 - 07:17.

 

En un tablero de 2009 x 2009 cuadritos, se han llenado todos los cuadritos usando solamente 1 o -1, y se ha obtenido el producto de los números de cada fila y de cada columna. Encontrar todas las posibles sumas de estos 4018 productos.
Ejemplo: en un tablero de 3x3 un posible llenado es:
1 1 1
1 1 -1
1 1 1
y la suma de los 6 productos 1 + 1 -1 +1 -1 +1 = 2
 

Problema

Elección condicionada de 3

Enviado por jmd el 1 de Mayo de 2012 - 07:15.

¿De cuántas maneras se pueden escoger 3 números diferentes del conjunto C={1,2,3,...,19,20} de manera que la suma de esos tres números sea múltiplo de 3?

Problema

Círculo de diámetro la base de un triángulo

Enviado por jmd el 1 de Mayo de 2012 - 07:14.

 

Sea ABC un triángulo tal que la circunferencia S de diámetro BC pasa por el punto medio M de AB. Sea N un punto sobre S de manera que MN es diámetro de S. Probar que el área del triángulo ABC entre el área del triángulo MNC es 2.
 

Distribuir contenido