IX ONMAS 2009

Problema

Demostrar perpendicular

Enviado por jmd el 1 de Mayo de 2012 - 06:22.

Sean $ABC$ un triángulo rectángulo y $M$ el punto medio de la hipotenusa $BC$. Sus catetos cumplen que $CA$ es menor que $AB$. Se coloca un punto $D$ sobre $AB$ de manera que $CA = AD$. Finalmente, sea $E$ el punto común de $AM$ y $CD$. Si $F$ es un punto sobre $BC$ tal que $EF$ es paralela a BC $AC$, demostrar que $AM$ es perpendicular a $FD$.

Problema

Tangentes a circunferencia desde el centro de otra

Enviado por jmd el 1 de Mayo de 2012 - 06:19.

 

Considere las circunferencias $a$ y $b$ de centros $A$ y $B$ respectivamente. Desde el centro $A$ se trazan las tangentes a $b$ y éstas cortan a $a$ en los puntos $P$ y $Q$. Desde el centro $B$ se trazan las tangentes a $a$ que cortan a $b$ en $R$ y $S$. Demostrar que $PQRS$ es un rectángulo.
 

Problema

Número igual a la suma del factorial de sus dígitos

Enviado por jmd el 1 de Mayo de 2012 - 06:18.

 

Encontrar todos los números de 3 dígitos de la forma $abc$ ($a$ es el dígito de las centenas, $b$ es el dígito de las decenas y $c$ es el dígito de las unidades) que cumplan con: $abc = a!+b!+c!.$ (Nota: n! es el producto n(n-1)...(2)(1) y se lee $n$ factorial.)
 

Problema

Sumas de productos de filas y columnas en un tablero

Enviado por jmd el 1 de Mayo de 2012 - 06:17.

 

En un tablero de 2009 x 2009 cuadritos, se han llenado todos los cuadritos usando solamente 1 o -1, y se ha obtenido el producto de los números de cada fila y de cada columna. Encontrar todas las posibles sumas de estos 4018 productos.
Ejemplo: en un tablero de 3x3 un posible llenado es:
1 1 1
1 1 -1
1 1 1
y la suma de los 6 productos 1 + 1 -1 +1 -1 +1 = 2
 

Problema

Elección condicionada de 3

Enviado por jmd el 1 de Mayo de 2012 - 06:15.

¿De cuántas maneras se pueden escoger 3 números diferentes del conjunto $C=\{1,2,3,...,19,20\}$ de manera que la suma de esos tres números sea múltiplo de 3?

Problema

Círculo de diámetro la base de un triángulo

Enviado por jmd el 1 de Mayo de 2012 - 06:14.

 

Sea $ABC$ un triángulo tal que la circunferencia $S$ de diámetro $BC$ pasa por el punto medio $M$ de $AB$. Sea $N$ un punto sobre $S$ de manera que $MN$ es diámetro de $S$. Probar que el área del triángulo $ABC$ entre el área del triángulo $MNC$ es 2.
 

Problema

Semáforos en la Avenida Salsipuedes

Enviado por jmd el 1 de Mayo de 2012 - 06:13.

 

Problema

Razón de áreas

Enviado por jmd el 1 de Mayo de 2012 - 06:08.

En el rectángulo $ABCD$, los puntos $P, Q, R, S$, uno en cada lado, dividen el lado donde están en razón 3:2. ¿Cuál es el cociente del área del paralelogramo $PQRS$ entre el área de la región del rectángulo que queda afuera del paralelogramo? (N del E: en el examen se dio la figura.)

 

Problema

Minimizar invitaciones

Enviado por jmd el 1 de Mayo de 2012 - 06:06.

En el Messenger (MSN), para que dos personas estén en contacto, es suficiente con que una de ellas envíe una invitacíon a la otra y ésta la acepte. Luis tiene 114 amigos de la ONMAS 2009, y ninguno de ellos se tiene agregado al Messenger entre sí. Luis les propone a ellos la idea de ponerse en contacto. ¿Cuál es el número mínimo de invitaciones aceptadas para que Luis y todos sus amigos estén en contacto por el MSN?

Problema

Suma cuadrática de 3 dígitos

Enviado por arbiter-117 el 24 de Junio de 2009 - 09:48.

¿Cuantas ternas de digitos diferentes $(x,y,z)$ es posible formar, de modo que la suma $x^2+y^2+z^2$ sea multiplo de 5? Nota: las ternas $(0,1,3)$ y $(1,0,3)$ son diferentes.

Distribuir contenido