VI ONMAS 2006

Problema

Múltiplos de 6 y de 7... y potencia de 11

Enviado por jmd el 28 de Abril de 2012 - 18:12.

Paz hace una lista con todos los números del 1 al 2006. Encierra en un círculo todos los números que son múltiplos de 6. Luego, encierra en un círculo todos los números que son múltiplos de 7. Finalmente, multiplica todos los números que encerró. ¿Cuál es la mayor potencia de 11 que divide exactamente al resultado de esta multiplicación?

 

Problema

Bolsas con canicas

Enviado por jmd el 28 de Abril de 2012 - 18:10.

Se tiene cierto número de bolsas acomodadas en una fila. En ellas se meten canicas de la siguiente forma: en la primera bolsa se mete una canica, en la segunda bolsa dos, en la tercera tres y así sucesivamente. Luis escoge una bolsa que tiene catorce canicas menos que la última bolsa de la fila y observa que la suma de todas las canicas de las bolsas que están a la derecha de la que escogió es igual a la suma de las que están a la izquierda. ¿Cuántas canicas tiene la bolsa que Luis escogió?

Problema

Origen de un número

Enviado por jmd el 28 de Abril de 2012 - 18:09.

Para cualquier número natural $n$ se dice que su origen se calcula multiplicando sus cifras, después las cifras del resultado, y así sucesivamente hasta llegar a un número de una sola cifra. Por ejemplo, el origen del 149 es el 8, ya que $149\rightarrow36\rightarrow 18\rightarrow 8$; y el origen del 5486 es el 0, ya que $5486\rightarrow 960\rightarrow 0$. Encuentra la suma de todos los números de dos o más cifras distintas, tales que su origen sea un número impar.

 

Problema

¿Cuál mediana forma dos isósceles?

Enviado por jmd el 28 de Abril de 2012 - 18:06.

Sean $ABC$ un triángulo, y $D$ y $E$ puntos sobre $AC$ y $BC$, respectivamente, tales que $AB$ es paralelo a $DE$. Sea $P$ el pie de la altura trazada desde $A$ al segmento $BC$. Si el ángulo $ACB$ es de 20 grados y $AB = 2DE$, encuentre el valor del ángulo $PDC$.

 

Problema

Mayor divisor, 7 veces el menor

Enviado por jmd el 28 de Abril de 2012 - 18:04.

Encontrar todos los números naturales $n$ tales que sus divisores, distintos de $1$ y $n$, cumplen que el más grande es 7 veces el más pequeño.

 

Problema

Geometría con origami

Enviado por jmd el 12 de Febrero de 2009 - 06:19.

Una hoja de papel en forma rectangular $ABCD$ se dobla a lo largo de la línea $PQ$ de manera que el vértice $A$ quede en el lugar del punto $A’$ y el vértice $B$ en el lugar del punto $B’$. Al medir los segmentos $AP, BQ, DP$, se tiene que miden $26 cm, 5 cm$ y $10 cm$, respectivamente.

¿Cuál es el área del la hoja de papel?

Distribuir contenido