Publicaciones Recientes

Problema

El juego de biribol

Enviado por jmd el 10 de Enero de 2012 - 16:11.

En un partido de biribol se enfrentan dos equipos de cuatro jugadores cada uno. Se organiza un torneo de biribol en el que participan n personas, que forman equipos para cada partido (los equipos no son fijos). Al final del torneo se observó que cada dos personas disputaron exactamente un partido en equipos rivales. Determinar para qué valores de n es posible organizar un torneo con tales características.

Problema

Desigualdad con áreas de dos triángulos

Enviado por jmd el 10 de Enero de 2012 - 16:10.

Sean ABC un triángulo y X,Y,Z puntos interiores de los lados BC,CA,AB respectivamente. Sean A,B,C los circuncentros correspondientes a los triángulos AZY,BXZ,CYX, respectivamente. Demuestre que:
(ABC)(ABC)/4
y que la igualdad ocurre si y sólo si AA,BB y CC son concurrentes.

Nota: Para un triángulo cualquiera RST, denotamos su área con (RST).

Problema

Ecuación sin soluciones enteras

Enviado por jmd el 10 de Enero de 2012 - 16:09.

Pruebe que la ecuación x2008+2008!=21y no tiene soluciones enteras (x,y)

Problema

Divisibilidad en un polinomio cúbico

Enviado por jmd el 10 de Enero de 2012 - 16:08.

Sean m y n números enteros tales que el polinomio P(x)=x3+mx+n tiene la siguiente propiedad: si x y y son enteros y 107 divide a P(x)P(y), entonces 107 divide a xy. Demuestre que divide a 107 divide a m.

Problema

Bisectriz externa en un escaleno

Enviado por jmd el 10 de Enero de 2012 - 16:06.

Sean ABC un triángulo escaleno y l la bisectriz exterior del ABC. Sean P  y  Q los pies de las perpendiculares a la recta l que pasan por A y C, respectivamente. Sean M y N las intersecciones de CP y AB y AQ y BC, respectivamente. Pruebe que las rectas AC,MN y l tienen un punto en común.

Problema

Suma de max-min diferencias

Enviado por jmd el 10 de Enero de 2012 - 16:04.

Considere los números 1,2,3,,20082 distribuidos en un tablero de 2008×2008, de modo que en cada casilla haya un número distinto. Para cada fila y cada columna del tablero se calcula la diferencia entre el mayor y el menor de sus elementos. Sea S la suma de los 4016 números obtenidos. Determine el mayor valor posible de S.

Problema

Familia de hexágonos convexos

Enviado por jmd el 10 de Enero de 2012 - 09:39.

Sea F la familia de todos los hexágonos convexos H que satisfacen las siguientes condiciones:

  • (a) los lados opuestos de H son paralelos;
  • (b) tres vértices cualesquiera de H se pueden cubrir con una franja de ancho 1.

Determinar el menor número real l tal que cada uno de los hexágonos de la familia F se puede cubrir con una franja de ancho l.

Nota: Una franja de ancho l es la región del plano comprendida entre dos rectas paralelas que están a distancia l (incluidas ambas rectas paralelas).

Problema

Números a-tres-vidos

Enviado por jmd el 10 de Enero de 2012 - 09:37.

Un número natural n es atresvido si el conjunto de sus divisores, incluyendo al 1 y al n, se puede dividir en tres subconjuntos tales que la suma de los elementos de cada subconjunto es la misma en los tres. ¿Cuál es la menor cantidad de divisores que puede tener un número atresvido?

Problema

Saltos dragón en un tablero

Enviado por jmd el 10 de Enero de 2012 - 09:36.

En un tablero cuadriculado de tamaño 19×19, una fiha llamada dragón da saltos de la siguiente manera: se desplaza 4 casillas en una dirección paralela a uno de los lados del tablero y 1 casilla en dirección perpendicular a la anterior.


Problema

Disputa por un territorio circular

Enviado por jmd el 10 de Enero de 2012 - 09:29.

Dos equipos, A y B, disputan el territorio limitado por una circunferencia. A tiene n banderas azules y B tiene n banderas blancas (n2, fijo). Juegan alternadamente y A comienza el juego.

Distribuir contenido