Publicaciones Recientes

Noticia

Estatal el 26: segunda llamada --y lista de problemas

Enviado por jmd el 18 de Junio de 2009 - 11:20.

En el documento adjunto está la segunda lista de problemas. De ahí se eligirá un segundo problema para el concurso estatal, el cual se realizará el dia 26 de junio a las 9AM en las instalaciones de la UAMCEH-UAT en Cd Victoria, Tamaulipas.

Problema

Los tenis del chico fresa

Enviado por jmd el 16 de Junio de 2009 - 17:55.

El chico fresa tenía 10 pares de zapatos tenis dedicados (para ir al Mall los fines de semana). Se entiende que de marca (Adidas Dragon, Converse, Fila, K-Swiss, Mizuno, New Balance, Nike Executor, Puma Fluxion, Reebok, Vans). En la mudanza de su familia se le perdieron 6 zapatos.

Problema

Subconjuntos sin divisores

Enviado por jmd el 15 de Junio de 2009 - 13:46.

Del conjunto $A=\{1,2,\ldots,2n\}$ se eligen elementos y se forma un subconjunto $S$ de $A$. Si resulta que ninguno de los elementos de $S$ tiene múltiplos en $S$ ¿cuál es el máximo número de elementos de $S$?

 

 

Problema

Subconjuntos sin consecutivos

Enviado por jmd el 15 de Junio de 2009 - 07:37.

¿De cuántas formas se puede elegir un subconjunto de tamaño 3 y sin elementos consecutivos del conjunto $\{1,2,\ldots,20\}$?

Problema

Torneo de tenis

Enviado por jmd el 13 de Junio de 2009 - 07:54.

En un torneo de tenis de eliminación simple todos los partidos son eliminatorios y no hay empates (si el número de participantes no es potencia de 2 se organiza una eliminatoria bye). ¿Cuántos partidos se juegan?

Problema

No divisibilidad

Enviado por Fernando Mtz. G. el 12 de Junio de 2009 - 23:20.

Demostrar que no existen $a$ y $b$ >2, enteros positivos, para los cuales: $2^b-1$ divide $2^a+1$

Problema

Maratón

Enviado por jmd el 11 de Junio de 2009 - 18:14.

Ximena y Yadira participan en un maratón: el recorrido es del punto $A$ al $B$ y de regreso de $B$ a $A$. La distancia entre $A$ y $B$ es de $p^2qr$ km, con $p,q,r$ primos en orden creciente.

Noticia

Recordatorio: el estatal es el 26 -- y uno de los problemas es de la lista atachada...

Enviado por jmd el 9 de Junio de 2009 - 15:35.

¡Atención OMM-seleccionados de región del estado de Tamaulipas!

Problema

Concurrencia de cuerdas y diagonales de un cuadrilátero circunscrito

Enviado por jmd el 8 de Junio de 2009 - 05:04.

Las diagonales de un cuadrilátero circunscrito pasan por el punto de intersección de las cuerdas (que unen los puntos de tangencia en lados opuestos).

Problema

Cuerda y diagonal de un cuadrilátero circunscrito

Enviado por jmd el 7 de Junio de 2009 - 20:17.

Sea $ ABCD $ un cuadrilátero circunscrito (a una circunferencia, i.e., sus 4 lados son tangentes a la circunferencia), y $ E,F,G,H$ los puntos de tangencia en los lados $ AB, BC, CD, DA, $ respectivamente. Considere la intersección $R$ de una diagonal y una cuerda que une dos puntos opuestos de tangencia, digamos $BD$ y $EG$.

Distribuir contenido