VII Norestense

Problema

19 números en un tablero circular

Enviado por jmd el 22 de Septiembre de 2010 - 11:57.

En un tablero circular hay 19 casillas numeradas en orden del 1 al 19 (a la derecha del 1 está el 2, a la derecha de éste está el 3 y así sucesivamente, hasta el 1 que está a la derecha del 19). En cada casilla hay una ficha. Cada minuto cada ficha se mueve a su derecha el número de la casilla en que se encuentra en ese momento más una; por ejemplo, la ficha que está en el lugar 7 se va el primer minuto 7 + 1 lugares a su derecha hasta la casilla 15; el segundo minuto esa misma ficha se mueve a su derecha 15 + 1 lugares, hasta la casilla 12, etc. Determinar si en algún momento todas las fichas llegan al lugar donde empezaron y, si es así, decir cuántos minutos deben transcurrir.

Problema

¿Cómo se prueba paralelismo?

Enviado por jmd el 22 de Septiembre de 2010 - 11:47.

En el triángulo isósceles $ABC$, con $AB = AC$, $D$ es un punto sobre la prolongación de $CA$ tal que $DB$ es perpendicular a $BC$, $E$ es un punto sobre la prolongación de $BC$ tal que $CE = 2BC$, y $F$ es un punto sobre $ED$ tal que $FC$ es paralela a $AB$. Probar que $FA$ es paralela a $BC$.

 

Problema

Combinatoria en el campamento

Enviado por jmd el 21 de Septiembre de 2010 - 18:44.

 En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en $3$ períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea $C(n)$ el número de formas en que puede hacerse el calendario de actividades.

Distribuir contenido