VIII Norestense

Problemas de VIII Olimpiada Norestense de Matemáticas
Problema

En sucesión modular busca el ciclo

Enviado por jmd el 5 de Octubre de 2008 - 06:34.

Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.

Problema

¿Cuál es la invariante?

Enviado por jmd el 5 de Octubre de 2008 - 06:16.

En las siguientes cuadriculas, se dice que dos cuadrados son adyacentes, si comparten un lado. Considere la siguiente operación T: se eligen cualesquiera dos números en cuadrados adyacentes y a ambos se les suma el mismo entero. ¿Se puede transformar el tablero de la izquierda en el de la derecha mediante iteraciones de T?.

Problema

Un problema de igualdad de areas

Enviado por jmd el 5 de Octubre de 2008 - 06:11.

Sean $ABCD$ un paralelogramo, $ E $ un punto sobre la recta $AB$, mas allá de $ B $, $ F $ un punto sobre la recta $AD$, mas allá de $ D $, y $ K $ el punto de intersección de las rectas $ED$ y $BF$. Demuestre que los cuadriláteros $ABKD$ y $CEKF$ tienen la misma área.

Distribuir contenido