XI Concurso Regional del Noreste de la OMM
Números norteños
Un entero positivo $N$ es norteño si para cada dígito $d >0$, existe un divisor de $N$ cuyo último dígito es $d$. ¿Cuántos números norteños menores que 2016 hay que tengan la menor cantidad posible de divisores?
Tercia de reales
Encuentra todas las ternas de reales $(a,b,c)$ tales que $$ a- \frac{1}{b} = b - \frac{1}{c} = c - \frac{1}{a}$$
Punto exterior a un cuadrado
Sea $ABCD$ un cuadrado. P un punto sobre la semicircunferencia de diámetro AB exterior al cuadrado. Sean M y N las intersecciones de PD y PC con AB, respectivamente. Demuestra que $MN^2 = AM \cdot BN$
Cuadritos unitarios distanciados
Considera un tablero de $n \times n$, con $n \geq 5$. Dos cuadritos unitarios se dice que son distanciados si no se encuentran en el mismo renglón ni en renglones consecutivos y tampoco en la misma columna ni en columnas consecutivas. Se toman 3 rectángulos con vértices y lados sobre los puntos y lineas del tablero de manera que si dos cuadritos unitarios pertencen a distintos rectángulos entonces son distanciados . ¿De cuántas maneras es posible hacer esto?
Cíclico dentro de un isóceles
Sea $ABC$ un triángulo con $AB=AC$ de gravicentro $G$. $M$ y $N$ los puntos medios de $AB$ y $AC$ respectivamente y $O$ el circuncentro del trángulo $BCN$. Muestra que $MBOG$ es un cuadrilátero cíclico.
Suma de cubos igual a 2016
Determina si existen alguna terna de enteros no negativos, no necesariamente distintos, $(a,b,c)$ tales que:
$$a^3 + b^3 + c^3 =2016$$