Sean $n$ puntos distintos, $P_1, P_2,\ldots, P_n$, sobre una recta del plano ($n \geq 2$). Considere todas las circunferencias de diámetro $P_iP_j$ ($1\leq i \leq j\leq n$) y coloreadas cada una con uno de $k$ colores dados. Llamamos $(n-k)$-nube a esta configuración.
Para cada entero positivo $k$, determine todos los $n$ para los cuales se verifica que toda $(n-k)$-nube contiene dos circunferencias tangentes exteriormente del mismo color.
Nota: Para evitar ambigüedades, los puntos que pertenecen a más de una circunferencia no llevan color.