
Sean A y B puntos del plano y C un punto de la mediatriz de AB. Se construye una sucesión C1,C2,…,Cn,… de la siguiente manera: C1=C y, para n≥1, si Cn no pertenece al segmento AB, entonces Cn+1 es el circuncentro del triángulo ABCn.
Determine todos los puntos C tales que la sucesión C1,C2,…,Cn,… está definida para todo n y es periódica a partir de un cierto punto.
Nota: Una sucesión C1,C2,…,Cn,… es periódica a partir de un cierto punto si existen enteros positivos k y p tales que Cn+p=Cn para todo n≥k.