XIV OIM 1999

Problema

Sucesión periódica en la mediatriz de un segmento

Enviado por jmd el 5 de Enero de 2012 - 15:13.

 Sean A y B puntos del plano y C un punto de la mediatriz de AB. Se construye una sucesión C1,C2,,Cn, de la siguiente manera: C1=C y, para n1, si Cn no pertenece al segmento AB, entonces Cn+1 es el circuncentro del triángulo ABCn.
Determine todos los puntos C tales que la sucesión C1,C2,,Cn, está definida para todo n y es periódica a partir de un cierto punto.

Nota: Una sucesión C1,C2,,Cn, es periódica a partir de un cierto punto si existen enteros positivos k y p tales que Cn+p=Cn para todo nk.

Problema

Circuncírculo de un acutángulo y las alturas de éste

Enviado por jmd el 5 de Enero de 2012 - 15:09.

Un triángulo acutángulo ABC está inscrito en una circunferencia de centro O. Las alturas del triángulo son AD,BE y CF. La recta EF corta a la circunferencia en P y Q.

  • a) Pruebe que OA es perpendicular a PQ.
  • b) Si M es el punto medio de BC, pruebe que AP2=2ADOM
Problema

Factor primo de un número con dígitos 1,3,7,9

Enviado por jmd el 5 de Enero de 2012 - 15:07.

 Sea B un entero mayor que 10 tal que cada uno de sus dígitos pertenece al conjunto {1,3,7,9}. Demuestre que B tiene un factor primo mayor o igual que 11.

 

Problema

Nubes de circunferencias coloreadas

Enviado por jmd el 5 de Enero de 2012 - 15:05.

Sean n puntos distintos, P1,P2,,Pn, sobre una recta del plano (n2). Considere todas las circunferencias de diámetro PiPj (1ijn) y coloreadas cada una con uno de k colores dados. Llamamos (nk)-nube a esta configuración.

Para cada entero positivo k, determine todos los n para los cuales se verifica que toda (nk)-nube contiene dos circunferencias tangentes exteriormente del mismo color.
Nota: Para evitar ambigüedades, los puntos que pertenecen a más de una circunferencia no llevan color.

Problema

Circunferencias bisecantes

Enviado por jmd el 5 de Enero de 2012 - 15:01.

Dadas dos circunferencias M y N, decimos que M biseca a N si la cuerda común es un diámetro de N. Considere dos circunferencias fijas C1 y C2 no concéntricas.

  • a) Pruebe que existen infinitas circunferencias B tales que B biseca a C1 y B biseca a C2.
  • b) Determine el lugar geométrico de los centros de las circunferencias B.
Problema

El cubo de la suma de los dígitos

Enviado por jmd el 5 de Enero de 2012 - 14:59.

Halle todos los enteros positivos menores que 1000 y tales que el cubo de la suma de sus dígitos es igual al cuadrado de dicho entero.

Distribuir contenido