VI OIM 1991

Problema

Construir un triángulo (dados ortocentro y dos puntos medios)

Enviado por jmd el 9 de Diciembre de 2011 - 21:38.

Dados 3 puntos no alineados M,N,P, sabemos que M y N son puntos medios de dos lados de un triángulo y que P es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.

Problema

¿Puedes maliciar que es suma de dos cuadrados?

Enviado por jmd el 9 de Diciembre de 2011 - 21:36.

Sea P(X,Y)=2X26XY+5Y2. Diremos que un número entero A es un valor de P si existen números enteros B y C tales que A=P(B,C).

  • i) Determinar cuántos elementos de {1,2,3,...,100} son valores de P.
  • ii) Probar que el producto de valores de P es un valor de P.
Problema

Combinatoria con números de 3 cifras distintas elegidas de entre 5

Enviado por jmd el 9 de Diciembre de 2011 - 21:34.

Encontrar un número N de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de N.

Problema

Función creciente en [0,1]

Enviado por jmd el 9 de Diciembre de 2011 - 21:33.

Sea F una función creciente definida para todo número real x, $0\leq x \leq 1, tal que:

  • (a) F(0)=0
  • (b) F(x/3)=F(x)/2
  • (c) F(1x)=1F(x)

Encontrar F(18/1991)

 

Problema

Dos perpendiculares seccionan un cuadrado

Enviado por jmd el 9 de Diciembre de 2011 - 21:30.

Dos rectas perpendiculares dividen un cuadrado en cuatro partes, tres de las cuales tienen cada una área igual a 1. Demostrar que el área del cuadrado es cuatro.

Problema

Sumas de 14 más menos unos

Enviado por jmd el 9 de Diciembre de 2011 - 21:29.

A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?

Distribuir contenido