I OIM 1985
Cevianas por el circuncentro
Dado un triángulo $ABC$, considere los puntos $D, E, F$ en las rectas $BC, AC, AB$, respectivamente. Si las rectas $AD, BE, CF$ pasan todas por el centro $O$ del circuncírculo de $ABC$, cuyo radio es $r$, demostrar que
$$\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CE}=\frac{2}{r}$$
Un ejercicio en álgebra
Demostrar que si $x\neq1, y\neq1, x\neq{y}$ y $$ \frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}$$
entonces ambas fracciones son iguales a $x + y + z$.
Vieta y la desigualdad de las medias
Halle las raíces $r_1, r_2, r_3, r_4$ de la ecuación:
$$4x^4 – ax^3 + bx^2 – cx + 5 = 0$$
Sabiendo que son reales positivos, y que
$$\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}=1$$
Punto en el interior de un equilátero
Sea $P$ un punto interior al triángulo equilátero $ABC$ tal que:
$$PA = 5, PB = 7, PC = 8$$
Encontrar la longitud del lado del triángulo ABC.
Vieta y los polinomios simétricos
Encontrar todas las ternas de enteros $(a, b, c)$ tales que:
$$a + b + c=24$$
$$a^2 + b^2 + c^2=210$$
$$abc=440$$
Olimpiada Iberoamericana (el 5 de 1985)
A cada número natural n se le asigna un entero no negativo $f(n)$ de tal manera que se satisfacen las siguientes condiciones:
- (i) $f(rs)=f(r)+f(s)$
- (ii) $f(n)=0$, si el dígito de las unidades de n es 3
- (iii) $f(10)=0$
Hallar $f(1985)$