IV OIM 1989

Problema

Soluciones infinitas

Enviado por jmd el 9 de Diciembre de 2011 - 11:09.

 Mostrar que hay una infinidad de pares de números naturales que satisfacen la ecuación
2x^2 - 3x = 3y^2: $$2x^2 -3x + 1 =3y^2 + y$$

Problema

Rango de una función

Enviado por jmd el 9 de Diciembre de 2011 - 11:03.

Sea la función $f$ definida sobre el conjunto $\{1, 2, 3,\ldots\}$ tal que
$$f(1) = 1$$
$$f(2n + 1) = f(2n) +1$$
$$f(2n) = 3f(n)$$
Determinar el conjunto de valores que toma $f$

Problema

Una propiedad del incentro

Enviado por jmd el 9 de Diciembre de 2011 - 10:56.

La circunferencia inscrita en el triángulo $ABC$, es tangente a los lados $AB$ y $AC$ en los puntos $M$ y $N$, respectivamente. Las bisectrices de $A$ y $B$ intersecan a $MN$ en los puntos $P$ y $Q$, respectivamente. Sea $O$ el incentro del triángulo $ABC$. Probar que $MP\cdot OA = BC\cdot OQ$

Problema

Desigualdad sobre los lados de un triángulo

Enviado por jmd el 9 de Diciembre de 2011 - 10:54.

Sean $a, b, c$ las longitudes de los lados de un triángulo. Probar que:
$$|\frac{a-b}{a+b}+\frac{b-c}{b´c}+\frac{c-a}{ca}|<\frac{1}{16}$$

Problema

Desigualdad trigonométrica

Enviado por jmd el 9 de Diciembre de 2011 - 10:50.

Sean $x, y, z$ tres números reales tales que $0 < x < y < z < \pi/2$. Demostrar la desigualdad:
$$\pi/2 + 2\sin x\cos y + 2\sin y \cos z\gt \sin 2x + \sin 2y + \sin 2z$$

 

Problema

Sistema no lineal de ecuaciones

Enviado por jmd el 9 de Diciembre de 2011 - 10:44.

Determinar todas las ternas de números reales que satisfacen el sistema de
ecuaciones siguiente:
\begin{eqnarray*}
x + y - z &=& -1\\
x^2 - y^2 + z^2 &=& 1\\
-x^3 + y^3 + z^3 &=& -1
\end{eqnarray*}

Distribuir contenido