III OIM 1988
Sucesión libre de promedios
Considere los conjuntos de $n$ números naturales diferentes de cero en los cuales no hay tres elementos en progresión aritmética. Demuestre que, en uno de esos conjuntos, la suma de los inversos de sus elementos es máximo.
Ejercicio no trivial en álgebra
Considere las expresiones de la forma $x + yt + zt^2$, con $x, y, z$ números racionales, y $t^3=2$. Demuestre que si $x + yt +zt^2\neq 0$, entonces existen $u, v, w$ racionales tales que $(x + yt + z^2)(u + vt + wt^2)= 1$
¿Cómo se calcula la longitud de una ceviana?
Sea $ABC$ un triángulo cuyos lados son $a, b, c$. Se divide cada lado del triángulo en "n" segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto distintos de los vértices. Demuestre que $$\frac{S}{a^2+b^2+c^2}$$ es un número racional.
¿Cómo se definía elipse?
Demuestre que entre todos los triángulos cuyos vértices distan 3, 5 y 7, de un punto
dado P, el que tiene mayor perímetro admite a $P$ como su incentro.
Seis naturales no nulos
Sean $a,b,c,d,p$ y $q$ números naturales no nulos que verifican $ad - bc = 1$, y $$\frac{a}{b}\gt \frac{p}{q}\gt \frac{c}{d}$$
Demostrar que
- $q\geq b+d$
- Si $q=b+d$ entonces $p=a+c$
Lados y alturas en progresión aritmética, equilátero
Las medidas de los lados de un triángulo están en progresión aritmética, y las longitudes de las alturas del mismo triángulo también están en progresión aritmética. Demuestre que el triángulo es equilátero.