Sea $ABC$ un triángulo cuyos lados son $a, b, c$. Se divide cada lado del triángulo en "n" segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto distintos de los vértices. Demuestre que $$\frac{S}{a^2+b^2+c^2}$$ es un número racional.