XI OIM 1996
Segmentos formados por n puntos
Se tienen $n$ puntos distintos $A_1, A_2,\ldots,A_n$ en el plano y a cada punto $A_i$ se ha asignado un número real $\lambda$ distinto de cero, de manera que $\overline{A_iA_j}^2=\lambda_i+\lambda_j$, para todos los $i,j,i\neq j$
Demuestre que
(a) $n\leq 4$
(b) Si $n = 4$, entonces $\frac{1}{\lambda_1}+\frac{1}{\lambda_2}+\frac{1}{\lambda_3}+\frac{1}{\lambda_4}=0$
Coloreo de triángulos con fichas
Tres fichas $A, B, C$ están situadas una en cada vértice de un triángulo equilátero de lado $n$. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso $n = 3$.
Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:
Suma de fracciones 1/ab
Dado un número natural $n\geq 2$ considere todas las fracciones de la forma $1/ab$, donde $a$ y $b$ son números naturales, primos entre sí y tales que $$a < b \leq n$$ $$a + b \gt n$$ Demuestre que para cada $n$, la suma de estas fracciones es 1/2.
Método para distribuir ceros y unos en un tablero
Tenemos un tablero cuadriculado de $k^2 - k + 1$ filas y $k^2 - k + 1$ columnas, donde $k = p + 1$ y $p$ es un número primo. Para cada primo $p$, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente $k$ números $0$ en cada columna haya exactamente $k$ números $0$ y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.
Punto medio de la mediana
Sea $M$ el punto medio de la mediana $AD$ del triángulo $ABC$ ($D$ pertenece al lado $BC$). La recta $BM$ corta al lado $AC$ en el punto $N$. Demuestre que $AB$ es tangente a la circunferencia circunscrita al triángulo $NBC$ si, y sólo si, se verifica la igualdad $$\frac{BM}{MN}=\left(\frac{BC}{BN}\right)^2$$
Cubo formado por 1996 cubos
Sea $n$ un número natural. Un cubo de arista $n$ puede ser dividido en $1996$ cubos cuyas aristas son también números naturales. Determine el menor valor posible de $n$.