Tenemos un tablero cuadriculado de $k^2 - k + 1$ filas y $k^2 - k + 1$ columnas, donde $k = p + 1$ y $p$ es un número primo. Para cada primo $p$, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente $k$ números $0$ en cada columna haya exactamente $k$ números $0$ y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.