XV OIM 2000
Área de un hexágono bonito
Un hexágono convexo se denomina bonito si tiene cuatro diagonales de longitud 1, cuyos extremos incluyen todos los vértices del hexágono.
- (a) Dado cualquier número k, mayor que 0 y menor o igual que 1, encontrar un hexágono bonito de área k.
- (b) Demostrar que el área de cualquier hexágono bonito es menor que 3/2.
Juego con un montón de piedras
Hay un montón de 2000 piedras. Dos jugadores juegan alternadamente, de acuerdo a las siguientes reglas:
- (a) En cada jugada se pueden retirar 1, 2, 3, 4 ó 5 piedras del montón.
- (b) En cada jugada esá prohíbido que el jugador retire la misma cantidad de piedras que retiró su oponente en la jugada previa.
- (c) Pierde el jugador que en su turno no pueda realizar una jugada válida.
Determinar cuál jugador tiene estrategia ganadora y encontrarla.
Geométrica por eliminación
De una progresión aritmética infinita 1,a1,a2…, de números reales se eliminan términos, obteniéndose una progresión geométrica infinita: 1,an1,an2,… de razón q. Encontrar los posibles valores de q.
Problema diofantino
Encontrar todas las soluciones de la ecuación
(x+1)y−xz=1
Para x,y,z enteros mayores que 1.
Circunferencias secantes y tangente común
Sean S1 y S2 dos circunferencias de centros O1 y O2, respectivamente, secantes en M y N. La recta t es la tangente común a S1 y S2, más cercana a M. Los puntos A y B son los respectivos puntos de contacto de t con S1 y S2, C el punto diametralmente opuesto a B, y D el punto de intersección de la recta O1O2 con la recta perpendicular a la recta AM trazada por B. Demostrar que M,D y C están alineados.
Polígono regular de n lados
Se construye un polígono regular de n lados (n≥3) y se enumeran sus vértices del 1 al n. Se trazan todas las diagonales del polígono. Demostrar que si n es impar, se puede asignar a cada lado y a cada diagonal un número entero del 1 al n, tal que se cumplan simultáneamente las siguientes dos condiciones:
- (a) El número asignado a cada lado o diagonal es distinto a los asignados a los vértices que une.
- (b) Para cada vértice, todos los lados y diagonales que compartan dicho vértice
tienen números diferentes.
