Dada una circunferencia $C$, considere un cuadrilátero $ABCD$ con sus cuatro lados tangentes a $C$, con $AD$ tangente a $C$ en $P$ y $CD$ tangente a $C$ en $Q$. Sean $X$ y $Y$ los puntos donde $BD$ corta a $C$, y $M$ el punto medio de $XY$ . Demuestre que $\angle{AMP} = \angle{CMQ}$.