En un triángulo $ABC$, sean $I$ el centro de la circunferencia inscrita y $D, E$ y $F$ sus puntos de tangencia con los lados $BC, AC$ y $AB$, respectivamente. Sea $P$ el otro punto de intersección de la recta $AD$ con la circunferencia inscrita. Si $M$ es el punto medio de $EF$, demostrar que los cuatro puntos $P, I, M$ y $D$ pertenecen a una misma circunferencia.