Sea $ABCD$ un cuadrilátero y sean $P$ y $Q$ los puntos de trisección de la diagonal $BD$ (es decir, $P$ y $Q$ son puntos del segmento $BD$ para los cuales las longitudes $BP, PQ$ y $QD$ son todas iguales). Sean $E$ la intersección de la recta que pasa por $A$ y $P$ con el segmento $BC$, y $F$ la intersección de la recta que pasa por $A$ y $Q$ con el segmento $DC$. Demuestra lo siguiente:
1. Si $ABCD$ es un paralelogramo, entonces $E$ y $F$ son los respectivos puntos medios de los segmentos $BC$ y $CD$.
2. Si $E$ y $F$ son los puntos medios de $BC$ y $CD$, respectivamente, entonces $ABCD$ es un paralelogramo.
P1 OMM 1996. Cuadrilátero con diagonal trisecada
»
- Inicie sesión o regístrese para enviar comentarios