En la figura se muestra un triángulo acutángulo $ABC$ en el que la longitud de $AB$ es menor que la de $BC$ y la de $BC$ es menor que la de $AC$ . Los puntos $A', B'$ y $C'$ son tales que $AA'$ es perpendicular a $BC$, y la longitud
de $AA'$ es igual a la de $BC$; $BB'$ es perpendicular a $AC$ y la longitud de $BB'$ es igual a la de $AC$; $CC'$ es perpendicular a $AB$ y la longitud de $CC'$ es igual a la de $AB$. Además el ángulo $AC'B$ es de 90 grados. Demuestra que $A', B'$ y $C'$ son colineales.
P6 OMM 1996. Perpendiculares que miden el lado que cortan
»
- Inicie sesión o regístrese para enviar comentarios