Sea $ABC$ un triángulo y $AD$ la bisectriz del ángulo $\angle BAC$, con $D$ sobre $BC$. Sea $E$ un punto sobre el segmento $BC$ tal que $BD=EC$. Por $E$ traza la recta $l$ paralela a $AD$ y considera un punto $P$ sobre $l$ y dentro del triángulo. Sea $G$ el punto donde la recta $BP$ corta al lado $AC$ y sea $F$ el punto donde la recta $CP$ corta al lado $AB$. Muestra que $BF=CG$)