Decimos que un número natural $n$ es "charrúa" si satisface simultáneamente las siguientes condiciones:
- Todos los dígitos de $n$ son mayores que 1.
- Siempre que se multiplican cuatro dígitos de $n$, se obtiene un divisor de $n$.
Demostrar que para cada número natural $k$ existe un número charrúa con más de $k$ dígitos.