Publicaciones Recientes
¿Cuántos soluciones serán?
Encuentra todos los enteros no negativos $a$ y $b$ que satisfacen la ecuación $3\cdot 2^a+1=b^2.$
Ni primo ni cuadrado
Muestra que el número $5n+3$ no es un cuadrado perfecto, con n entero positivo y que si $2n+1$ y $3n+1$ son ambos cuadrados, entonces $5n+3$ no es primo.
Elemental de álgebra
Si $a^2 + a = 2b^2 + b = 50a - 49b$ ¿Cuanto es a+b?
Expresado como producto de tres
Sea $p_1 , p_2 , p_3 \dots$ la sucesión de números primos ordenados de menor a mayor. Si $n \geq 2$, demuestra que $p_n + p_{n+1}$ se puede expresar como el producto de al menos tres enteros mayores que 1 (no necesariamente distintos).
La magia de los números primos
Sean $a,b,c,d$ enteros positivos que satisfacen $ ab = cd$ . Muestra que $a+b+c+d$ no es un número primo.
Muchos 1's
Muestra que para todo entero positivo n, primo relativo con 10 existen infinidad de múltiplos de n cuyos dígitos son solo unos.
Calcular el área sombreada
He intentado la solución a este problema de muchas maneras, pero no he podido llegar a una respuesta, ya que los ángulos no son notables, tambien intente planteando ecuaciones y relaciones entre las áreas que se forman, pero no he llegado a la solución, No quiero concluir que no se puede hacer pues lo encontré planteado en un muy buen texto de geometría euclidiana y me niego a pensar que este mal planteado o que no sea posible su solución sin usar relaciones trigonométricas.
Se pide calcular el área sombreada solo en función de R(radio de la semicircunferencia mayor), usando solo relaciones geométricas (sin usar funciones trigonometricas)
Comienza el ciclo de la 30 Olimpiada Mexicana de Matemáticas en Tamaulipas
Calcular y dibujar triángulos con TrianCal
http://TrianCal.esy.es -- Abrir en Google Chrome.
(Calculadora de triángulos online desarrollada por Jesús S.)
YouTube: https://youtu.be/V2IV7lY52mA y https://youtu.be/MxmDzsfXN78
Os propongo esta calculadora de triángulos online gratuita y sin publicidad para ayudar a los alumnos con la geometría, no realiza los ejercicios, porque no se muestran las fórmulas de sus cálculos. Está pensada de manera didáctica para comprobar y visualizar los ejercicios realizados.
Jornadas en la Olimpiada de Tamaulipas
Para calentar motores antes de que inicie el proceso 2016, hemos (Orlando Ochoa, José Luis Medellin, Luis Javier Olvera,Roberto Alain y un servidor) diseñado un nuevo formato de competencia para los alumnos tamaulipecos que pueden volver a participar este año. Las llamadas ''Jornadas'' es una lista de problemas, que los alumnos realizan por equipos, y se evaluan dandoles puntos extras además de los 7 puntos por la solución de los problemas. Cada semana hay ganadores y una tabla de posiciones. La explicación del formato tal vez sea para después. Después de tres Jornadas, los problemas y soluciones más interesantes son los siguientes:
Jornada 1