Publicaciones Recientes
Encontrar k...
Determina si existen infinitos enteros $ k $, que cumplen que para cualquier primo $ p $, el numero $p^2+k$ siempre es compuesto.
Por ejemplo si tomamos $k=2$, para $p=2$ dicho numero es compuesto pero para $p=3$ no lo es...
2do. Entrenamiento: semana del 24 al 28
En las instalaciones de la UAMCEH-UAT el lunes 24 de agosto a las 9AM inicia el segundo entrenamiento. Continuará toda la semana del 24 al 28, con selectivo incluido el viernes 28 en la mañana. El tema es Teoría de números. Los días 24, 25 y 26 estará a cargo del profesor Roberto Torres de Queretaro.
Semicírculo y la descomposición en dos sumandos de un segmento.
Sea $$BC$ el diametro de una semicirculo y sea $A$ el punto medio del semicirculo. Sea M un punto sobre el arco $AC$. Seam $P$ y $Q$ los pies de las perpendiculares desde $A$ y C a la linea $BM$, respectivamente.
Demustra que $BP=PQ+QC$
División en casos
Encontrar todas las tripletas $(p,q,r)$ de números primos tales que $p^q+p^r$ es un cuadrado perfecto.
Criba modular
Encontrar todas las soluciones $(x,y)$ en enteros positivos para la ecuación $7^x-3\cdot 2^y=1.$
La preselección se reduce a 21
El día de hoy, sábado 15 de agosto, se aplicó el primer examen selectivo, de acuerdo a programa. Enseguida se presentan los puntajes obtenidos por los preseleccionados de la Delegación Tamaulipas 2009, en el primer examen selectivo. Con este selectivo la preselección se reduce a 21 alumnos.
Múltiplo de 11 compuesto de unos
Sea $p$ un un entero positivo. El número $11p$ está compuesto de $m$ dígitos todos iguales a 1. Encontrar todos los valores de $m$ para los cuales $p$ es primo.
Áreas enteras de triángulos
El área del triángulo $ ABC $ es un entero. Sobre los lados $ BC$ y $AC$ se eligen los puintos $X$ y $Y$, respectivamente. Los segmentos $AX$ y $ BY$ se cortan en un punto $P$ dentro del triángulo $ ABC $. El área de $BPX$ es 1, la de $APY$ es 2, y la de $APB$ es un entero. Encontrar el área del triángulo $ABC.$
Biblioteca
En mi biblioteca hay 5 libros de álgebra, 6 de combinatoria, y 8 de geometría, y todos son diferentes.
a) ¿De cuántas formas puedo elegir dos?
b) ¿De cuántas formas puedo elegir dos del mismo tema?
c) ¿De cuántas formas puedo elegir dos pero que no sean del mismo tema?
Partir la baraja
Sea $ n $ un entero positivo. Una baraja de $2n$ cartas contiene exactamente dos cartas marcadas con cada uno de los enteros $1,2,\ldots,n.$ Las cartas se ordenan en la forma $1,1,2,2,3,3,...,n,n.$ La baraja ya ordenada de esta manera se parte, y resulta que, en las dos partes, los dígitos en las cartas suman la misma cantidad.