Publicaciones Recientes

Problema

Múltiplo de cada uno de sus dígitos

Enviado por jmd el 5 de Mayo de 2012 - 18:17.

Encuentra el mayor número $N$ que cumpla, al mismo tiempo, las siguientes condiciones:

  • a) Todos los dígitos de $N$ son distintos,
  • b) $N$ es múltiplo de cada uno de sus dígitos.
Problema

Los problemas del nacional de la 12 ONMAS

Enviado por cuauhtemoc el 5 de Mayo de 2012 - 11:15.

Problema

Cuadrados

Enviado por Alexdidir el 1 de Mayo de 2012 - 17:21.

Hallar el mínimo k>2 para el cual existen k numeros enteros consecutivos tales que la suma de sus cuadrados es un cuadrado

Problema

Imposibilidad de nueve rectángulos

Enviado por jmd el 1 de Mayo de 2012 - 16:25.

 

Una cuadrícula de $6\times6$ se va a recortar en rectángulos siguiendo las líneas de la cuadrícula. Muestra que no es posible hacer una división de la cuadrícula en 9 rectángulos diferentes.
 

Problema

Área de pentágono

Enviado por jmd el 1 de Mayo de 2012 - 16:24.

 

Por los vértices D y A del cuadrado ABCD de lado 5 se trazan, respectivamente, los segmentos paralelos DE y AF hacia afuera del cuadrado, de tal manera DE mide 4 y es perpendicular a EF. Encuentra el área del pentágono ABCEF.
 

Problema

Ecuación de suma de fracciones

Enviado por jmd el 1 de Mayo de 2012 - 16:22.

 

Si $a$ y $b$ son enteros distintos entre sí y diferentes de cero que cumplen $\frac{a-2010}{b}+\frac{b+2010}{a}=2$ ¿cuál es el valor de $a-b$?
 
Problema

Razonado con suma de dígitos

Enviado por jmd el 1 de Mayo de 2012 - 16:20.

 

Mauricio ya cumplió años en el 2010. Al sumar los dígitos de la fecha de su nacimiento se dio cuenta que obtenía su edad. ¿Cuántos años puede tener Mauricio?
 

Problema

Seccionado de un cubo de lado $3$

Enviado por jmd el 1 de Mayo de 2012 - 16:18.

 

Un cubo de lado 3 se divide en 27 cubitos unitarios. ¿De cuántas formas podemos elegir tres cubitos de manera que sus centros estén en una misma recta? Nota: El centro de un cubito se localiza en el punto medio de una diagonal mayor.
 

Problema

Demostrar perpendicular

Enviado por jmd el 1 de Mayo de 2012 - 06:22.

Sean $ABC$ un triángulo rectángulo y $M$ el punto medio de la hipotenusa $BC$. Sus catetos cumplen que $CA$ es menor que $AB$. Se coloca un punto $D$ sobre $AB$ de manera que $CA = AD$. Finalmente, sea $E$ el punto común de $AM$ y $CD$. Si $F$ es un punto sobre $BC$ tal que $EF$ es paralela a BC $AC$, demostrar que $AM$ es perpendicular a $FD$.

Problema

Tangentes a circunferencia desde el centro de otra

Enviado por jmd el 1 de Mayo de 2012 - 06:19.

 

Considere las circunferencias $a$ y $b$ de centros $A$ y $B$ respectivamente. Desde el centro $A$ se trazan las tangentes a $b$ y éstas cortan a $a$ en los puntos $P$ y $Q$. Desde el centro $B$ se trazan las tangentes a $a$ que cortan a $b$ en $R$ y $S$. Demostrar que $PQRS$ es un rectángulo.
 

Distribuir contenido