Publicaciones Recientes
Múltiplo de cada uno de sus dígitos
Encuentra el mayor número $N$ que cumpla, al mismo tiempo, las siguientes condiciones:
- a) Todos los dígitos de $N$ son distintos,
- b) $N$ es múltiplo de cada uno de sus dígitos.
Los problemas del nacional de la 12 ONMAS
Cuadrados
Hallar el mínimo k>2 para el cual existen k numeros enteros consecutivos tales que la suma de sus cuadrados es un cuadrado
Imposibilidad de nueve rectángulos
Una cuadrícula de $6\times6$ se va a recortar en rectángulos siguiendo las líneas de la cuadrícula. Muestra que no es posible hacer una división de la cuadrícula en 9 rectángulos diferentes.
Área de pentágono
Por los vértices D y A del cuadrado ABCD de lado 5 se trazan, respectivamente, los segmentos paralelos DE y AF hacia afuera del cuadrado, de tal manera DE mide 4 y es perpendicular a EF. Encuentra el área del pentágono ABCEF.
Ecuación de suma de fracciones
Razonado con suma de dígitos
Mauricio ya cumplió años en el 2010. Al sumar los dígitos de la fecha de su nacimiento se dio cuenta que obtenía su edad. ¿Cuántos años puede tener Mauricio?
Seccionado de un cubo de lado $3$
Un cubo de lado 3 se divide en 27 cubitos unitarios. ¿De cuántas formas podemos elegir tres cubitos de manera que sus centros estén en una misma recta? Nota: El centro de un cubito se localiza en el punto medio de una diagonal mayor.
Demostrar perpendicular
Sean $ABC$ un triángulo rectángulo y $M$ el punto medio de la hipotenusa $BC$. Sus catetos cumplen que $CA$ es menor que $AB$. Se coloca un punto $D$ sobre $AB$ de manera que $CA = AD$. Finalmente, sea $E$ el punto común de $AM$ y $CD$. Si $F$ es un punto sobre $BC$ tal que $EF$ es paralela a BC $AC$, demostrar que $AM$ es perpendicular a $FD$.
Tangentes a circunferencia desde el centro de otra
Considere las circunferencias $a$ y $b$ de centros $A$ y $B$ respectivamente. Desde el centro $A$ se trazan las tangentes a $b$ y éstas cortan a $a$ en los puntos $P$ y $Q$. Desde el centro $B$ se trazan las tangentes a $a$ que cortan a $b$ en $R$ y $S$. Demostrar que $PQRS$ es un rectángulo.